В.В.Соболев, Южно-Российский государственный технический университет
Математическое моделирование вероятности достижения валютным курсом заданного уровня на будущем временном интервале может рассматриваться как задача экстраполяции, в которой использование математического аппарата для описания моделей и алгоритмов связано с преимуществами математического подхода к многостадийным процессам обработки информации, поиску методов их решения и преобразования в компьютерные программы.
Математическое моделирование в общем случае представляет собой не прямую дорогу к цели, а неоднократный возврат на уже пройденные ступени, их повторение с подправленными данными — последовательное приближение к удовлетворительному варианту. На первом этапе происходит оценка реальной ситуации с позиций имеющейся априорной модели и цели, и в результате на втором формируется содержательная модель, отражающая постановку задачи. Эта модель формируется на языке предметной области поставленной задачи: механики, физики, экономики, биологии, социологии и т.д. Третий этап: выбирается структура модели (то есть наиболее подходящий математический аппарат), вид и число уравнений, вид функций. На четвертом этапе, если это требуется, конкретизируются детали модели (делаются необходимые аппроксимации, подгоняются коэффициенты уравнений). Проверка качества получившейся конструкции с помощью критериев, выбор которых диктуется целью моделирования, осуществляется на заключительном, пятом этапе. Если качество модели неудовлетворительно, то процедура повторяется с начала или с промежуточного этапа — делается следующее приближение [1].
Можно только удивляться «непостижимой эффективности математики», когда будет получена «хорошая» модель [2,3]. Например, в середине 1990 года команда американских студентов посетила самое могущественное казино Лас-Вегаса и вернулась домой с несколькими миллионами долларов. Смекалистые студенты технического вуза в течение каждых выходных одного месяца играли в блэкджек и выигрывали огромные суммы. Эти ребята были из знаменитого на весь мир Массачусетского технологического института. Их миллионные выигрыши в казино возобновили застоявшуюся войну между игроками и казино, начатую 40 лет назад профессором математики Эдвардом Торпом. Тот понял, что среди других игр в казино блэкджек самая просчитываемая, если оценивать её в математическом плане. В большинстве игр, которые проводятся на деньги — рулетка, игры в кости, лотерея — во всех них события в прошлом не определяют события в будущем. Но это не относится к такой игре, как блэкджек.
Фундаментальной проблемой в играх является поиск возможностей ставок с положительным ожиданием. Аналогичная проблема в инвестировании — поиск возможностей инвестирования с «избыточной», с учетом поправок на риск, доходностью. Как только такие благоприятные возможности идентифицированы, игрок или инвестор должен решить, какую часть своего капитала поставить на кон (вложить). Интерес к «избыточной» доходности существует, по крайней мере, с XVIII столетия, с обсуждения Даниилом Бернулли Санкт-Петербургского парадокса. Но игрокам также необходимо знать, как управлять деньгами. На фондовых рынках (включая рынок ценных бумаг) проблема подобна этой, но более сложная. Игрок, который теперь является инвестором, ищет «большую прибыль при управляемом уровне риска». В обоих этих случаях Эдвард Торп использовал критерий Келли, который максимизирует ожидаемую величину логарифма дохода («максимизирует ожидаемую логарифмическую полезность») [4]. Общая задача экстраполяции заключается в нахождении значений некоторой функции, описывающей изменение показателя во времени, в точке, лежащей вне интервала наблюдения данной функции, что дает возможность использования экстраполяции для целей прогнозирования.
К настоящему времени она нашла широкое применение как способ прогнозирования простых прогнозирующих моделей. Экстраполяция определяет тенденции будущего развития исследуемого явления при условии, что закономерности данного явления, сложившиеся в прошлом, будут существовать и в будущем. Эти закономерности определяют наиболее устойчивые черты прогнозируемою процесса — его тренд, причем предполагается, что он может быть описан с помощью какой-либо функции.
Литература
1. Соболев В.В. Валютный дилинг на финансовых рынках/ Юж.-Рос. гос. техн. ун-т (НПИ). – Новочеркасск, 2009. – 442 с.
2. Пуанкаре А. О науке. М.: Наука, 1983.
3. Безручко Б.П. Смирнов Д.А. Математическое моделирование и хаотические временные ряды. Саратов: ГосУНЦ «Колледж», 2005. 320 с.
4. Эдвард О. Торп. Критерий Келли в блэкджеке, спортивных тотализаторах и на фондовой бирже.
Горячие Новости |
|
Рекомендованный брокер №1Журнал «Биржевой лидер»Журнал, интересные статьи
Видео |
Энциклопедия
Янукович Людмила Александровна |
Безру́ков Серге́й Вита́льевич |
Водолей |
FOREX.com |
8 января |
Бар |