Горячие Новости

Приложение адаптивных методов к прогнозированию валютного курса

В.В.Соболев, Южно-Российский государственный технический университет


Трудно провести четкую грань, отделяющую адаптивные методы прогнозирования от неадаптивных. Уже прогнозирование методом экстраполяции обычных регрессионных кривых содержит некоторый элемент адаптации, когда с каждым новым получением фактических данных параметры регрессионных кривых пересчитываются и уточняются. Через достаточно большой промежуток времени может быть заменен даже тип кривой. Однако здесь степень адаптации весьма незначительна; к тому же с течением времени она падает вместе с увеличением общего количества точек наблюдения и соответственно с уменьшением в выборке удельного веса каждой новой точки[1].

Последовательность процесса адаптации выглядит следующим образом. Пусть модель находится в некотором исходном состоянии, и по ней делается прогноз. Когда истечет одна единица времени (шаг моделирования), анализируем, насколько далек результат, полученный по модели, от фактического значения ряда. Ошибка прогнозирования через обратную связь поступает на вход системы и используется моделью в соответствии с ее логикой для перехода из одного состояния в другое с целью большего согласования своего поведения с динамикой ряда. На изменения ряда модель должна отвечать компенсирующими изменениями. Затем делается прогноз на следующий момент времени, и весь процесс повторяется. Таким образом, адаптация осуществляется интерактивно с получением каждой новой фактической точки ряда. Однако каковы должны быть правила перехода системы от одного состояния к другому, какова логика механизма адаптации?

В сущности, этот вопрос решается каждым исследователем интуитивно. Логика механизма адаптации задается априорно, а затем проверяется эмпирически. При построении модели мы неизбежно наделяем ее врожденными свойствами и, вместе с тем, для большей гибкости, должны позаботиться о механизмах условных рефлексов, усваиваемых или утрачиваемых с определенной инерционностью. Их совокупность и составляет логику механизма адаптации. В силу простоты каждой отдельно взятой модели и ограниченности исходной информации, зачастую представленной единственным рядом, нельзя ожидать, что какая-либо одна адаптивная модель годится для прогнозирования любого ряда, любых вариаций поведения.Адаптивные моделидостаточно гибки, однако на их универсальность рассчитывать не приходится. Поэтому при построении и объяснении конкретных моделей необходимо учитывать наиболее вероятные закономерности развития реального процесса, динамические свойства ряда соотносить с возможностями модели. Необходимо закладывать в модель те адаптивные свойства, которых хватит для слежения модели за реальным процессом с заданной точностью.

Вместе с тем нельзя надеяться на успешную самоадаптацию модели, более общей по отношению к той, которая необходима для отражения данного процесса, ибо увеличение числа параметров придает системе излишнюю чувствительность, приводит к ее раскачке и ухудшению получаемых по ней прогнозов. Таким образом, при построении адаптивной модели приходится выбирать между общей и частной моделью и, взвешивая их достоинства и недостатки, отдавать предпочтение той, от которой можно ожидать наименьшей ошибки прогнозирования. Поэтому необходимо иметь определенный запас специализированных моделей, разнообразных по структуре и функциональным свойствам. Для сравнения возможных альтернатив необходим критерий полезности модели. Несмотря на то, что в общем случае такой критерий является предметом спора, в случае краткосрочного прогнозирования признанным критерием обычно является средний квадрат ошибки прогнозирования. О качестве модели судят также по наличию автокорреляции в ошибках. В более развитых системах процесс проб и ошибок осуществляется в результате анализа как последовательных во времени, так и параллельных (конкурирующих) модификаций модели [2].

Литература
1. Соболев В.В. Валютный дилинг на финансовых рынках/ Юж.-Рос. гос. техн. ун-т (НПИ). – Новочеркасск, 2009. – 442 с.
2. Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов: Учеб. пособие. – М.: Финансы и статистика, 2003. – 416 с.


Рекомендованный брокер №1

Журнал «Биржевой лидер»

Журнал, интересные статьи

Видео

Энциклопедия

белорусский рубль
Белорусский рубль доллар
Муравьева Ирина Вадимовна
Муравьева Ирина Вадимовна
Шпиг Федор Иванович
Шпиг, Федор Иванович
Серебряков Алексей Валерьевич
Серебряков Алексей Валерьевич
24 июня
24 июня
Лобода Светлана Серге́евна
Лобода Светлана Серге́евна