Горячие Новости

Модели краткосрочного прогнозирования валютного курса

В.В.Соболев, Южно-Российский государственный технический университет


Информация о динамике курсов валют создает впечатление хаотического движения: падение и рост курсов сменяют друг друга в каком-то случайном порядке. Даже если за большой интервал времени отмечается тенденция, например, к росту, то на графике легко можно увидеть, что эта тенденция прокладывает себе путь через сложные движения временного ряда курса валюты. Направление ряда все время меняется под воздействием нерегулярных и часто неизвестных сил. Исследуемый объект в полной мере подвержен воздействию стихии мирового рынка, и точной информации о будущем движении курса нет. Необходимо сделать прогноз. При этом совершенно очевидно, что прогнозировать даже знак прироста курса очень сложно. Делать это обычно поручают экспертам, которые анализируют текущую конъюнктуру, а также пытаются выделить факторы, регулярным образом связанные с движением курса (фундаментальный анализ). При построении формальных моделей также пытаются выделить круг существенных факторов и на их основе сконструировать какой-либо индикатор, но ни эксперты-практики, ни формальные методы не дают пока хороших устойчивых результатов. Полагаем, объясняется это, прежде всего, тем, что если и есть действительно какой-либо круг факторов, влияющих стабильным образом на курс, то их воздействие надежно скрыто наложенной случайной составляющей и управляющими воздействиями центральных банков.

В результате эти факторы и их влияние выделить довольно трудно. Поэтому необходимо считать краткосрочное прогнозирование курса по существу задачей прогнозирования последовательного движения изолированного временного ряда, причиной которого является главным образом массовое поведение на валютном рынке мелких и крупных финансовых игроков, совершающих основной объем финансовых операций с валютой. Такой подход можно отнести к техническому анализу. Конечно, отдельно взятый участник валютной игры волен совершенно произвольно менять свою стратегию. И все же можно предположить, что поведение всей массы участников через соотношение спроса и предложения, влияющее на курс валюты, обладает в текущий период времени какой-то определенной доминирующей логикой, обнаруживающейся через закон больших чисел. Например, при падении курса валюты ее могут скупать, ожидая в дальнейшем повышения курса. И такой массовый спрос валюты действительно ведет к росту ее курса. Или наоборот, если после падения курса валюты доверие к ней падает и ожидается ее дальнейшее обесценение, то преобладает массовое предложение и курс падает еще ниже. Заметим, что при таком упрощенном подходе саму динамику временного ряда можно прочитать как хронологическую запись о массовом поведении участников валютного рынка. Это дает возможность при построении модели исходить из самого ряда, не привлекая дополнительной информации, а все рассуждения о массовом поведении участников рынка использовать лишь для качественной интерпретации. Если бы удалось найти в динамике ряда хотя бы краткосрочные закономерности, реализующиеся с вероятностью более 50%, то это дало бы основания рассчитывать на успех. Тогда стало бы возможным применение статистических методов для прогнозирования курсов, улавливающих более или менее устойчивые отношения последовательных событий временного ряда [1,2,4,6].
В данном случае ставится следующая задача. Во-первых, выяснить применимость для краткосрочного прогнозирования валютных курсов каких-либо статистических методов, назначение которых – описывать повторяющиеся события или ситуации, характеризующиеся относительно устойчивыми связями. Во-вторых, если статистические методы применимы для решения поставленной задачи, то установить их наиболее перспективный класс, указать характерные особенности этих методов, особое внимание уделить простейшим из них. В-третьих, показать на примере практические результаты. Отметим, что вопросам прогнозирования курсов валют всегда уделялось большое внимание. Из публикаций на близкую тему укажем, например, работу К. Гренжера и О. Моргенштерна (Granger Clive W.J., Morgenstern Oscar. Predictability of stock market prices. Massachusetts, 1970), в которой исследуется динамика курсов акций и приведена обширная библиография. В этой монографии фактически сделан вывод о том, что если и есть какая-либо корреляция в рядах подобного рода, то наиболее вероятно, что она имеется между смежными приростами курсов. Однако возникает вопрос, не пытаемся ли мы прогнозировать совершенно случайные колебания курсов валют. Ответ на этот вопрос находится в специальном исследовании [3,5].

Литература

1. Соболев В.В. Валютный дилинг на финансовых рынках/ Юж.-Рос. гос. техн. ун-т (НПИ). – Новочеркасск, 2009. – 442 с.
2. Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов: Учеб. пособие. – М.: Финансы и статистика, 2003. – 416 с.
3. Давнис В.В., Тинякова В.И. Адаптивные модели: анализ и прогноз в экономических системах. – Воронеж: Изд-во Воронеж. гос. ун-та, 2006.– 380 с.
4. Мишкин Ф. Экономическая теория денег, банковского дела и финансовых рынков: Учебное пособие для вузов/ Пер. с англ. Д.В. Виноградова под ред. М.Е. Дорошенко. – М.: Аспект Пресс, 1999. – 820 с.
5. Лукашин Ю.П. О возможности краткосрочного прогнозирования курсов валют с помощью простейших статистических моделей // Вестник МГУ. -1990. – Сер. 6. Экономика. -№ 1.-С. 75-84.
6. http://bh-consulting...ring/index.html


Рекомендованный брокер №1

Журнал «Биржевой лидер»

Журнал, интересные статьи

Видео

Энциклопедия

Земля
Земля
Кембридж
Кембридж
Бургас
Бургас
Зодиак
Зодиак – таинство знаков
Тенерифе
Тенерифе
Астана
Столица Казахстана город Астана